

OMV Technical Information Versions

VERSIONS

Mounting flange	Shaft	Port size	European version	US version	Drain connection	Check valve	Main type designation
	Cyl. 50 mm	G1	0		Yes	Yes	OMV
	Cyl. 2.25 in	1 ⁵ / ₁₆ -12 UN		0	Yes	Yes	OMV
Standard	Splined 2.125 in	G1	0		Yes	Yes	OMV
flange	3piiried 2.123 iii	1 ⁵ / ₁₆ -12 UN		0	Yes	Yes	OMV
liange	Tapered 60 mm	G1	0		Yes	Yes	OMV
	Tapered 2.25 in	1 ⁵ / ₁₆ -12 UN		0	Yes	Yes	OMV
SAE-C	Cyl. 2.25 in	1 ⁵ / ₁₆ -12 UN		0	Yes	Yes	OMV
flange	Splined 2.125 in	1 ⁵ / ₁₆ -12 UN		0	Yes	Yes	OMV
	Cyl. 50 mm	G1	0		Yes	Yes	OMVW
Wheel	Tapered 60 mm	G1	0		Yes	Yes	OMVW
	Tapered 2.25 in	1 ⁵ /16-12 UN		0	Yes	Yes	OMVW
Short	No output shaft	G1	0		Yes	Yes	OMVS
Function diagram - see page : $ ightarrow$							

Features available (options):

Speed sensor Motor with tacho connection Viton shaft seal Painted Ultra short

OMV Technical Information Code Numbers

CODE NUMBERS

	Displacement [cm³]							
CODE NUMBERS	315	400	500	630	800	Technical data – Page	Shaft loads – Page	Dimensions – Page
151B	3100	3101	3102	3103	3104	60	63	72
151B	2150	2151	2152	2153	2154	60	63	73
151B	3105	3106	3107	3108	3109	60	63	72
151B	2155	2156	2157	2158	2159	60	63	73
151B	3110	3111	3112	3113	3114	60	63	72
151B	2160	2161	2162	2163	2164	60	63	73
151B	2183	2184	2185	2186	2187	60	64	74
151B	2188	2189	2190	2191	2192	60	64	74
151B	3115	3116	3117	3118	3119	60	63	75
151B	3120	3121	3122	3123	3124	60	63	75
151B	2170	2171	2172	2173	2174	60	63	76
151B	3125	3126	3127	3128	3129	60	-	77
	65	65	66	66	67			

Ordering

Add the four digit prefix "151B" to the four digit numbers from the chart for complete code number.

Example:

151B3101 for an OMV 400 with standard flange, cyl. 50 mm shaft and port size G 1.

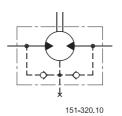
Note: Orders will not be accepted without the four digit prefix.

TECHNICAL DATA FOR OMV, OMVW AND OMVS

Type			OMV OMVW OMVS	OMV OMVW OMVS	OMV OMVW OMVS	OMV OMVW OMVS	OMV OMVW OMVS
Motor size			315	400	500	630	800
Geometric displacemer	cm³		314.5	400.9	499.6	629.1	801.8
deometric displacemen	[in³]		[19.19]	[24.46]	[30.49]	[38.39]	[48.93]
May speed	min ⁻¹	cont.	510	500	400	315	250
Max. speed	[rpm]	int ¹⁾	630	600	480	380	300
		annt.	920	1180	1460	1660	1880
Man 4 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	Nm	cont.	[8140]	[10440]	[12920]	[14690]	[16640]
Max.torque	[lbf·in]	:m+ 1)	1110	1410	1760	1940	2110
		int.1)	[9820]	[12480]	[15580]	[17170]	[18680]
	kW [hp]		42.5	53.5	53.5	48.0	42.5
Management		cont.	[57.0]	[71.7]	[71.7]	[64.4]	[57.0]
Max. output		int.¹)	51.0	64.0	64.0	56.0	48.0
			[68.4]	[85.8]	[85.8]	[75.1]	[64.4]
	bar [psi]		200	200	200	180	160
		cont.	[2900]	[2900]	[2900]	[2610]	[2320]
		int.¹)	240	240	240	210	180
Max. pressure drop			[3480]	[3480]	[3480]	[3050]	[2610]
		1.2)	280	280	280	240	210
		peak ²⁾	[4060]	[4060]	[4060]	[3480]	[3050]
			160	200	200	200	200
AA	l/min	cont.	[42.3]	[52.8]	[52.8]	[52.8]	[52.8]
Max. oil flow	[USgal/min]	1)	200	240	240	240	240
		int.¹)	[52.8]	[63.4]	[63.4]	[63.4]	[63.4]
Max. starting pressure	bar		8	8	8	8	8
with unloaded shaft	[psi]		[116]	[116]	[116]	[116]	[116]
	at max. press	drop cont.	710	910	1130	1330	1510
Min. starting	Nm [lbf·in]		[6280]	[8050]	[10000]	[11770]	[13360]
torque	at max. press	drop int.1)	850	1090	1360	1550	1700
	Nm [lbf·in]		[7520]	[9650]	[12040]	[13720]	[15050]

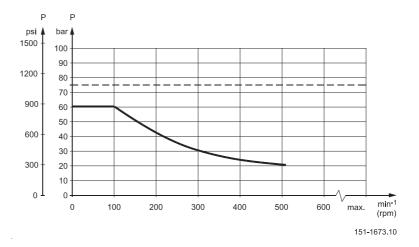
Туре			Max. inlet pressure	Max. return pressure with drain line
	bar	cont	210	140
OMV OMVW OMVS	[psi]	[psi] cont.	[3050]	[2030]
	bar	int.1)	250	175
	[psi]	[psi]	[3630]	[2540]
	bar	mank2)	300	210
	[psi]	peak ²⁾	[4350]	[3050]

Intermittent operation: the permissible values may occur for max. 10% of every minute.
 Peak load: The permissible values may occur for max. 1% of every minute.


For max. permissible combination of flow and pressure, see function diagram for actual motor.

MAX. PERMISSIBLE SHAFT SEAL PRESSURE

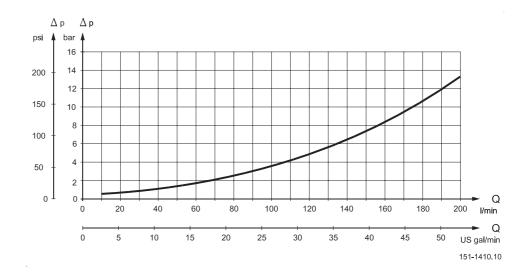
OMV with check valves and without use of drain connection:


The pressure on the shaft seal never exceeds the pressure in the return line

OMV with check valves and with drain connection:

The shaft seal pressure equals the pressure on the drain line.

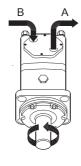
Max. return pressure without drain line or max. pressure in the drain line



---- Intermittent operation: the permissible values may occur for max. 10% of every minute.

----- Continuous operation

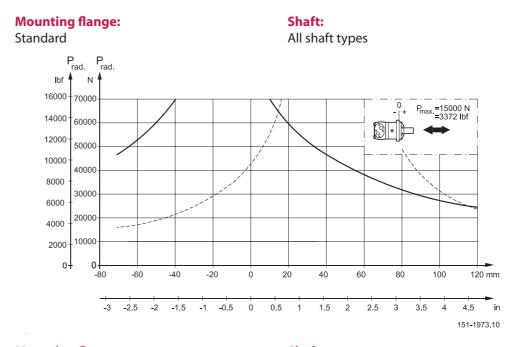
PRESSURE DROP IN MOTOR

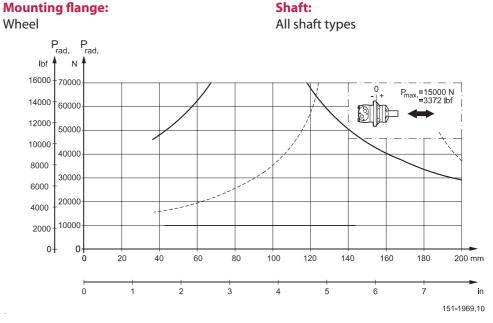

The curve applies to an unloaded motor shaft and an oil viscosity of 35 mm²/s (165 SUS)

OIL FLOW IN DRAIN LINE

The table shows the max. oil flow in the drain line at a return pressure less than 5-10 bar [75-150 psi].

Pressure drop	Viscosity	Oil flow in drain line	
bar [psi]	mm²/s [SUS]	l/min [US gal/min]	
	20	3.0	
140	[100]	[0.79]	
[2030]	35	2.0	
	[165]	[0.53]	
	20	6.0	
210	[100]	[1.59]	
[3050]	35	4.0	
	[165]	[1.06]	

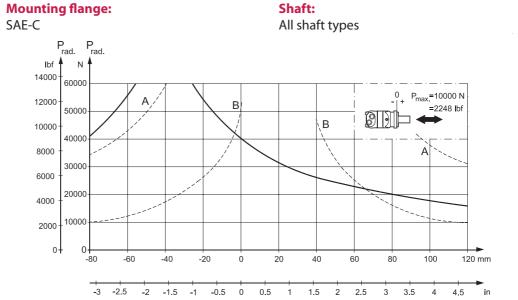

DIRECTION OF SHAFT ROTATION



PERMISSIBLE SHAFT LOADS FOR OMV

The output shaft runs in tapered roller bearings that permit high axial and radial forces. The permissible radial load on the shaft is shown for an axial load of 0 N as a function of the distance from the mounting flange to the point of load application.

The curve is based on B10 bearing life (2000 hours or 12,000,000 shaft revolutions at 100 min⁻¹) at rated output torque, when mineral-based hydraulic oil with a sufficient content of anti-wear additives, is used.


For 3,000,000 shaft revolutions or 500 hours – increase these shaft loads with 52%. The dash curve shows max. radial shaft load. Any shaft load exceeding the values shown in the curve will involve a risk of breakage.

Bearing life calculations can be made using the explanation and formula provided in the chapter "Bearing dimensioning" in the technical information "General Orbital motors" DHMH.PK.100.G2.02 520L0232.

LEHENGOAK, S.A.

OMV Technical Information Technical data

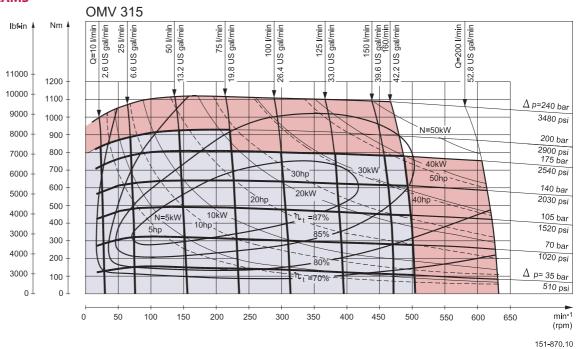
PERMISSIBLE SHAFT LOADS FOR OMV

A: Cyl. 2.25 in shaft B: Splined 2.125 in shaft

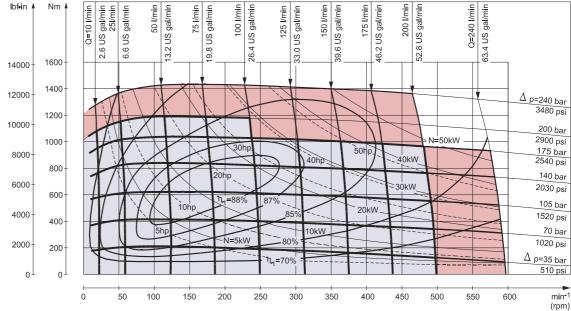
The output shaft runs in tapered roller bearings that permit high axial and radial forces. The permissible radial load on the shaft is shown for an axial load of 0 N as a function of the distance from the mounting flange to the point of load application.

151-1965.10

The curve is based on B10 bearing life (2000 hours or 12,000,000 shaft revolutions at 100 min⁻¹) at rated output torque, when mineral-based hydraulic oil with a sufficient content of anti-wear additives, is used.


For 3,000,000 shaft revolutions or 500 hours – increase these shaft loads with 52%. The dash curve shows max. radial shaft load. Any shaft load exceeding the values shown in the curve will involve a risk of breakage.

Bearing life calculations can be made using the explanation and formula provided in the chapter "Bearing dimensioning" in the technical information "General Orbital motors" DHMH.PK.100.G2.02 520L0232.


OMV Technical Information Function diagrams

FUNCTION DIAGRAMS

를 들는 돈은 달로 일을 된는 돈

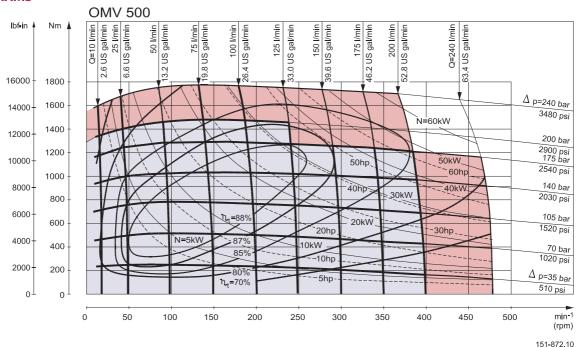
151-871.10

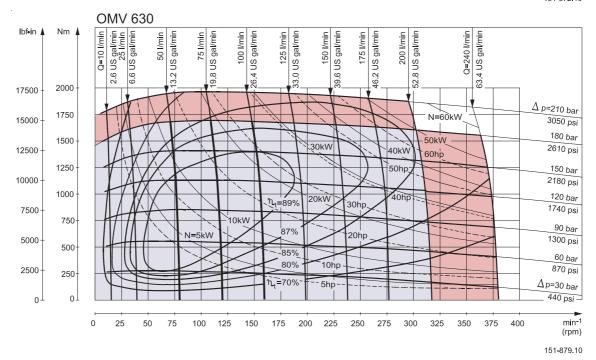
Explanation of function diagram use, basis and conditions can be found on page 5.

Continuous range

OMV 400

Intermittent range (max. 10% operation every minute)


Note: Intermittent pressure drop and oil flow must not occur simultaneously.

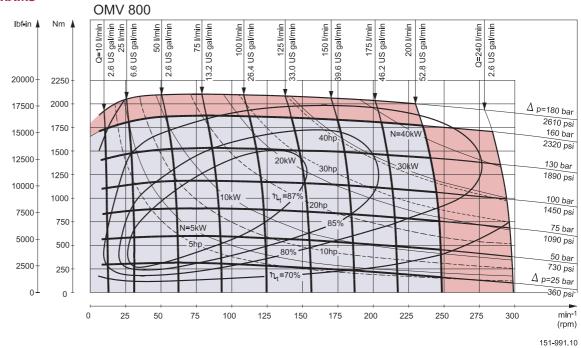

LEHENGOAK, s. a.

OMV Technical Information

Function diagrams

FUNCTION DIAGRAMS

Explanation of function diagram use, basis and conditions can be found on page 5.


- Continuous range
- Intermittent range (max. 10% operation every minute)

Note: Intermittent pressure drop and oil flow must not occur simultaneously.

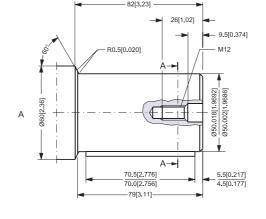
OMV Technical Information Function diagrams

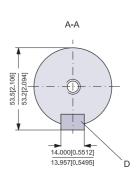
FUNCTION DIAGRAMS

Explanation of function diagram use, basis and conditions can be found on page 5.

Continuous range

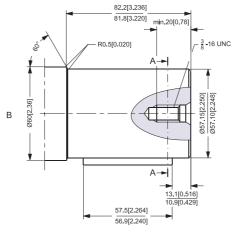
Intermittent range (max. 10% operation every minute)

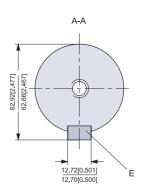

Note: Intermittent pressure drop and oil flow must not occur simultaneously.


LEHENGOAK, S.A.

OMV Technical Information Shaft version

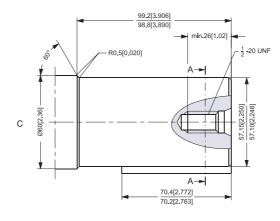
SHAFT VERSION

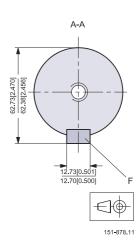

A: Cylindrical 50 mm shaft D: Parallel key A14×9×70 DIN 6885



B: Cylindrical 2.25 in shaft for OMV with standard mounting flange E: Parallel key

E: Parallel key $^{1}/_{2} \times ^{1}/_{2} \times 2^{1}/_{4}$ in B.S. 46

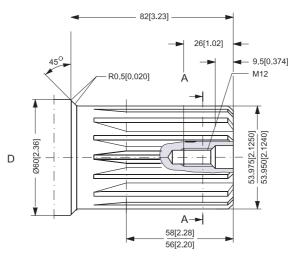


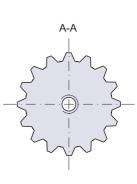

C: Cylindrical 2.25 in shaft for OMV with mounting flange SAE-C

F: Parallel key

1/2 × 1/2 × 21/4 in

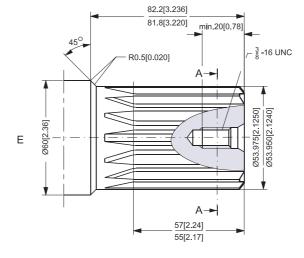
B.S. 46

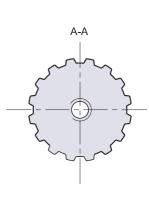



LEHENGOAK, S.A.

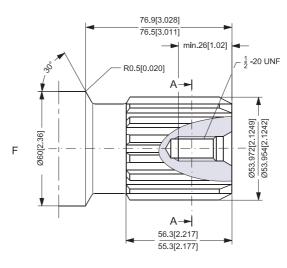
OMV Technical Information Shaft version

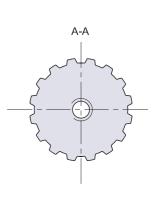
SHAFT VERSION


D: Involute splined shaft ANS B92.1 - 1970 standard Flat root side fit Pitch ⁸/₁₆ Teeth 16 Major dia. 2.125 in Pressure angle 30°



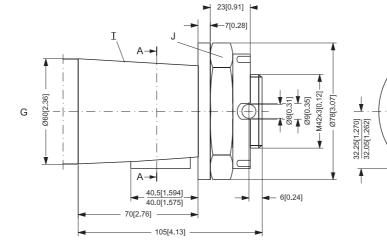
US Version


E: Involute splined shaft for OMV with standard mounting flange ANS B92.1 - 1970 standard Flat root side fit Pitch ⁸/₁₆ Teeth 16 Major dia. 2.125 in Pressure angle 30°

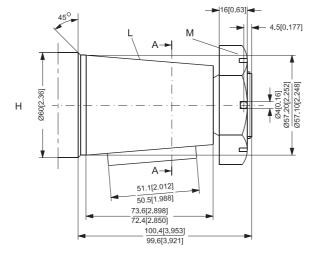


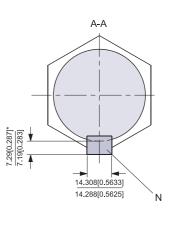
US Version

F: Involute splined shaft for OMV with mounting flange SAE-C ANS B92.1 - 1970 standard Flat root side fit Pitch ⁸/16 Teeth 16 Major dia. 2.125 in Pressure angle 30°


151-1918.10

OMV Technical Information Shaft version


LEHENGOAK, S.A.


SHAFT VERSION

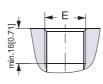
- G: Tapered 60 mm shaft (ISO/R775)
- J: DIN 937 Across flats: 65 mm Tightening torque: 750 ±50 Nm [6640 ±440 lbf-in]
- I: Taper 1:10
- K: Parallel key B16×10×32 DIN 6885

- H: Tapered 2.25 in shaft
- L: Cone 1:8 SAE J501
- M: 1¹/₂ 18 UNEF Across flats: 2³/₈ in Tightening torque: 750 ±50 Nm [6640 ±440 lbf-in]
- N: Parallel key $\frac{9}{16} \times \frac{9}{16} \times 2$ in B.S. 46

A-A

16.000[0.6299] 15.957[0.6282]

Κ



151-1919.10

PORT THREAD VERSIONS

Α

A: G main ports E: ISO 228/1 - G1

В Ø4<u>5.5(1.791]</u> Ø45.0[1.772] F →

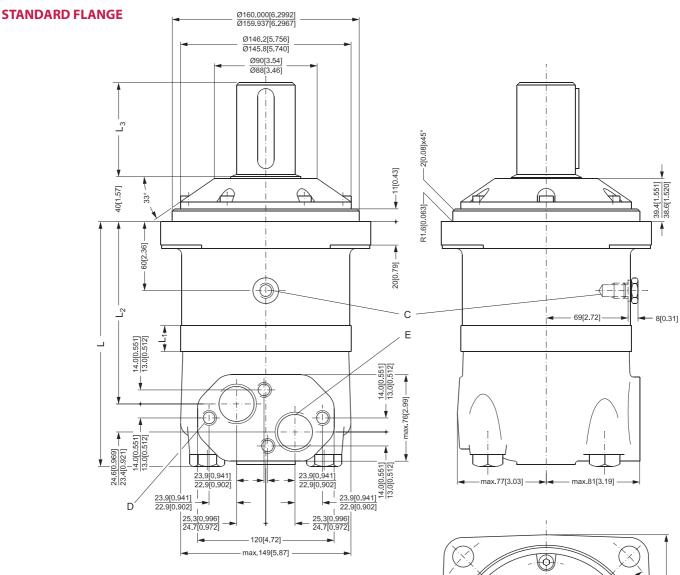
B: UN main ports F: 1 5/16 - 12 UN O-ring boss port

С

C: G drain port G: ISO 228/1 - G¹/4

D

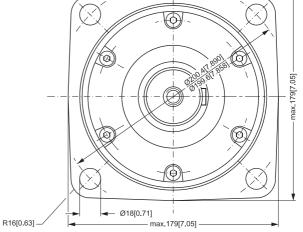
151-1978.10


D: UNF drain port H: ⁹/16 - 18 UNF O-ring boss port

OMV

Technical Information

Dimensions – European version



Туре	L _{max.}	L _{1*}	L ₂
	[in]	[in]	[in]
OMV 315	215	22.0	160
OIVIV 313	[8.46]	[0.866]	[6.30]
OMV 400	222	29.0	167
ONIV 400	[8.74]	[1.142]	[6.57]
OMV 500	230	37.0	175
OIVIV 300	[9.05]	[1.457]	[6.89]
OMV 630	240	47.5	186
OIVIV 030	[9.45]	[1.870]	[7.32]
OMV 800	254	61.5	200
CIVIV 800	[10.00]	[2.421]	[7.87]

	L ₃
Output shaft	mm
	[in]
Cyl. 50 mm	82
Splined 2.125 in	[3.23]
Tapered 60 mm	105
Tapered of Illin	[4.13]

C: Drain connection
G \(^1/4\); 12 mm [0.47 in] deep
D: M12; 12 mm [0.47 in] deep
E: G 1; 18 mm [0.71 in] deep

151-890.10

^{*)} The gearwheel set is 3.5 mm [0.138 in] wider across the rollers than the L, dimensions

LEHENGOAK, S. A.

OMV Technical Information Dimensions – US version


Туре	L _{max.}	L _{1*}	L ₂
	[in]	[in]	[in]
OMV 315	215	22.0	160
OIVIV 313	[8.46]	[0.866]	[6.30]
OMV 400	222	29.0	167
01010 400	[8.74]	[1.142]	[6.57]
OMV 500	230	37.0	175
OIVIV 300	[9.05]	[1.457]	[6.89]
OMV 630	240	47.5	186
OIVIV 030	[9.45]	[1.870]	[7.32]
OMV 800	254	61.5	200
CIVIV 800	[10.00]	[2.421]	[7.87]

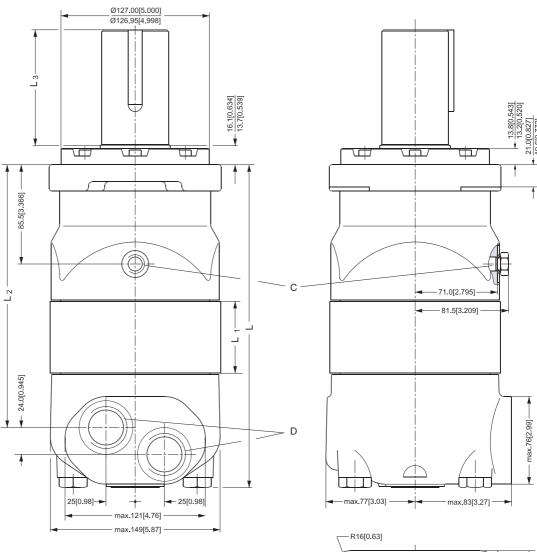
Output shaft	L ₃ mm [in]
Cyl. 2.25 in	82
Splined 2.125 in	[3.23]
Tapered 2.25 in	100
Tapered 2.23 III	[3.94]

- C: Drain connection

 9/16 18 UNF;

 13 mm [0.51 in] deep
 O-ring boss port
- D: 15/16 12 UN; 19 mm [0.75 in] deep O-ring boss port
- *) The gearwheel set is 3.5 mm [0.138 in] wider across the rollers than the L₁ dimensions

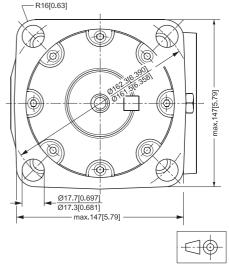
151-890.10.22


LEHENGOAK, s. a.

OMV

Technical Information

Dimensions – US version

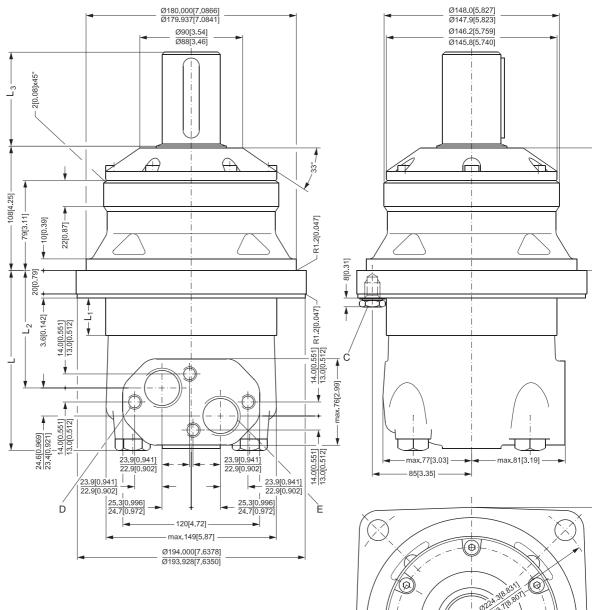

SAE-C FLANGE

Туре	L _{max.}	L _{1*}	L ₂
	[in]	[in]	[in]
OMV 315	239	22.0	185
OIVIV 313	[9.41]	[0.866]	[7.28]
OMV 400	246	29.0	192
01010 400	[9.69]	[1.142]	[7.56]
OMV 500	254	37.0	200
ONIV 300	[10.00]	[1.457]	[7.87]
OMV 630	265	47.5	211
ONIV 030	[10.43]	[1.870]	[8.31]
OMV 800	279	61.5	225
ONIV 800	[10.98]	[2.421]	[8.86]

Output shaft	L ₃ mm [in]
Cyl. 2.25 in	99
Cyl. 2.23 III	[3.90]
Splined 2.125 in	76.7
Spiineu 2.125 iii	[3.02]

- C: Drain connection
 9/16 18 UNF;
 13 mm [0.51 in] deep
 O-ring boss port
- D: 1⁵/₁₆ 12 UN; 19 mm [0.75 in] deep O-ring boss port
- *) The gearwheel set is 3.5 mm [0.138 in] wider across the rollers than the L₁ dimensions

151-1485.10

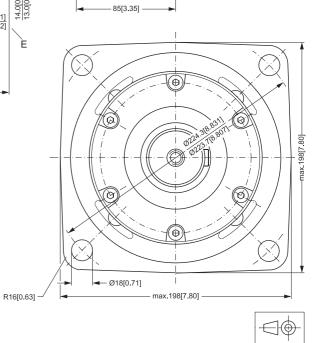

LEHENGOAK, S. A.

OMV

Technical Information

Dimensions – European version

WHEEL

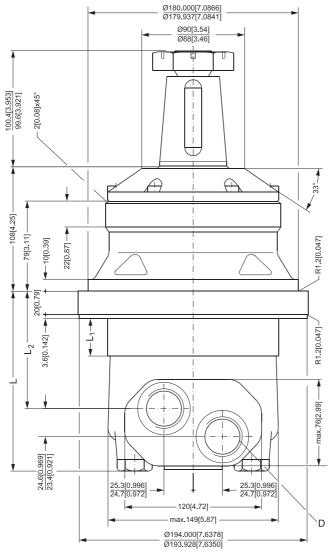


Туре	L _{max.}	L _{1*}	L ₂
	[in]	[in]	[in]
OMVW	146	22.0	92
315	[5.75]	[0.866]	[3.62]
OMVW	153	29.0	99
400	[6.02]	[1.142]	[3.90]
OMVW	161	37.0	107
500	[6.34]	[1.457]	[4.21]
OMVW	172	47.5	118
630	[6.77]	[1.870]	[4.65]
OMVW	185	61.5	132
800	[7.28]	[2.421]	[5.20]

Output shaft	L ₃
Cyl. 50 mm	[in] 82
	[3.23]
Tapered 60 mm	105
Tapered of Illin	[4.13]

- C: Drain connection G 1/4; 12 mm [0.47 in] deep
- D: M12;12 mm [0.47 in] deep E: G 1;18 mm [0.71 in] deep

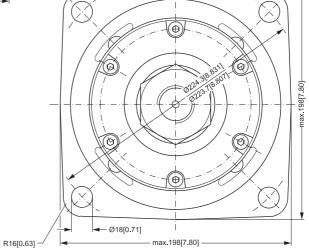
^{*)} The gearwheel set is 3.5 mm [0.138 in] wider across the rollers than the L, dimensions


151-899.10

LEHENGOAK, S.A.

OMV Technical Information

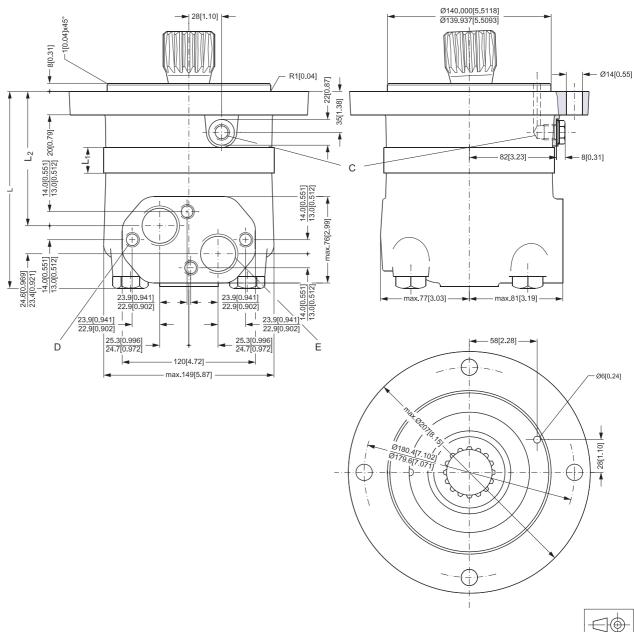
Dimensions – US version


WHEEL

Ø148.0[5.827] Ø147.9[5.823] Ø146.2[5.756] Ø145.8[5.740]	max.107.7/4.240]
max.77[3.03] max.83[3.27]	<u> </u>

Туре	L _{max.}	L _{1*}	L ₂
	[in]	[in]	[in]
OMVW	147	22.0	92
315	[5.79]	[0.866] [3.62	
OMVW	154	29.0 99	
400	[6.06]	[1.142]	[3.90]
OMVW	162	37.0 107	
500	[6.38]	[1.457] [4.2	
OMVW	172	47.5 118	
630	[6.77]	[1.870] [4.65]	
OMVW	187	61.5	132
800	[7.36]	[2.421]	[5.20]

- C: Drain connection ⁹/₁₆ - 18 UNF; 13 mm [0.51 in] deep O-ring boss port
- O-ring boss port
 D: 1⁵/₁₆ 12 UN;
 19 mm [0.75 in] deep
 O-ring boss port
- *) The gearwheel set is 3.5 mm [0.138 in] wider across the rollers than the L₁ dimensions


151-899.10.22

LEHENGOAK, s. a.

OMV Technical Information

Dimensions – European version

Туре	L _{max.}	L _{1*}	L ₂
	[in]	[in]	[in]
OMVS	171	22.0	117
315	[6.73]	[0.866]	[4.61]
OMVS	179	29.0	124
400	[7.05]	[1.142]	[4.88]
OMVS	186	37.0	132
500	[7.32]	[1.457]	[5.20]
OMVS	197	47.5	143
630	[7.76]	[1.870]	[5.63]
OMVS	211	61.5	157
800	[8.31]	[2.421]	[6.18]

- C: Drain connection G ¹/₄; 12 mm [0.47 in] deep D: M12; 12 mm [0.47 in] deep
- E: G 1; 18 mm [0.71 in] deep
- *) The gearwheel set is 3.5 mm [0.138 in] wider across the rollers than the L₁ dimensions

151-900.10

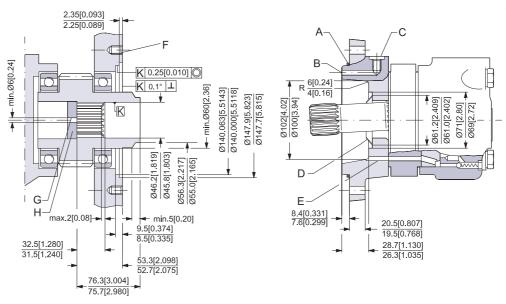
LEHENGONK, S.A.

OMV Technical Information OMVS

INSTALLING THE OMVS

The cardan shaft of the OMVS motor acts as an "output shaft". Because of the movement of the shaft, no seal can be fitted at the shaft output.

Internal oil leakage from the motor will therefore flow into the attached component.


During start and operation it is important that the spline connection and the bearings in the attached component receive oil and are adequately lubricated. To ensure that the spline connection receives sufficient oil, a conical sealing ring between the shaft of the attached component and the motor intermediate plate is recommended. This method is used in the OMV.

The conical sealing ring (code. no. 633B9021) is supplied with the motor.

To ensure that oil runs to the bearings and other parts of the attached component, the stop plate must have a hole in it (see fig. below).

We recommend an O-ring between motor and attached component. The O-ring (code no. 151B1041) is supplied with the motor. If motor and attached component have been separated, remember to refill before starting up. Fill the oil through the drain connection.

OMVS DIMENSIONS OF THE ATTACHED COMPONENT

151-815.10

- A: O-ring: 140 × 3 mm
- B: External drain channel
- C: Drain connection
 - G 1/4; 12 mm [0.47 in] deep
- D: Conical seal ring

- E: Internal drain channel
- F: M12; min. 18 mm [0.71 in] deep
- G: Oil circulation hole
- H: Hardened stop plate

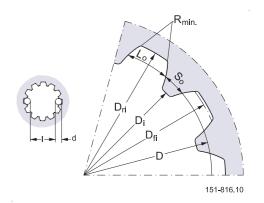
OMV Technical Information OMVS

INTERNAL SPLINE DATA FOR THE COMPONENT TO BE ATTACHED

The attached component must have internal splines corresponding to the external splines on the motor cardan shaft (see drawing below).

Material:

Case hardening steel with a tensile strength corresponding at least to 20 MoCr4 (900 N/mm²) or SAE 8620.


Hardening specification:

- On the surface: $HV = 750 \pm 50$
- 0.7 ± 0.2 mm under the surface: HV = 560

Internal involute spline data

Standard ANS B92.1-1970, class 5 (corrected $m \cdot X = 1$; m = 2.54)

Fillet root		mm	in
Number of teeth	Z	16	16
Pitch	DP	10/20	10/20
Pressure ang	le	30°	30°
Pitch dia.	D	40.640	1.6
Major dia.	D _{ri}	45.2 +0.4	1.780 +0.016
Form dia. (min.)	D_{fi}	44.6	1.756
Minor dia.	D _i	38.5 + 0.039	1.516 + 0.0015
Space width (circular)	L _o	5.180 ±0.037	0.204 ±0.0015
Tooth thickness (circular)	S _o	2.835	0.1116
Fillet radius	R _{min.}	0.4	0.015
Max. measuremer between pin	nt I	32.47 + 0.15	1.278 +0.006
Pin dia.	d	5.6 ±0.001	0.22 ±0.00004

* Finished dimensions (when hardened)

DRAIN CONNECTION ON OMVS OR ATTACHED COMPONENT

A drain line ought to be used when pressure in the return line can exceed the permissible pressure on the shaft seal of the attached component.

The drain line can be connected at two different points:

- 1) at the motor drain connection
- 2) at the drain connection of the attached component.

If a drain line is fitted to the attached component, it must be possible for oil to flow freely between motor and attached component.

The drain line must be led to the tank in such a way that there is no risk of the motor and attached component being drained of oil when at rest.

The maximum pressure in the drain line is limited by the attached component and its shaft seal.